
A Brief Study of Successive Cancellation Polar 

Decoder: Design and Performance Analysis 

Swapnil P. Badar1,  Kamlesh Khanchandani2,  Pravin Wankhede3 
1,2,3Department of Electronics and Telecommunication Engineering, 

Shri Sant Gajanan Maharaj College of Engineering, Shegaon, India

 

 

Abstract—Polar codes are emerging as a promising solution 

for error correction in modern communication systems, and 

Successive Cancellation Decoding (SCD) is the most widely used 

decoding algorithm for polar codes due to its simplicity and low 

computational complexity. This paper provides a brief study of 

the Successive Cancellation Polar Code Decoder, focusing on its 

design and performance analysis. We provide an overview of the 

SCD algorithm, its implementation, and its performance in terms 

of throughput and decoding latency. We designed and 

implemented the SC decoder on the Xilinx platform using 

Verilog HDL, achieving a latency of 3.351ns and throughput of 

238.73 Mbps with on-chip dynamic power consumption of 4.14 

watts and utilizing 446 LUTs. Our study shows that SCD can 

achieve high decoding throughput while maintaining low 

decoding latency and low power consumption, making it well-

suited for 5G wireless communication. This paper emphasizes 

the importance of careful design and correct implementation of 

processing elements for optimal performance in the SC decoder. 

The results of this study can contribute to the further 

development of efficient and reliable error-correcting codes for 

modern communication systems. 

Keywords— Polar Decoder, Error Control Code, SC decoder, 

Channel Coding, Wireless Communication, 5G. 

I. INTRODUCTION 

In recent years, 5G wireless communication has become a 
prominent technology in the field of communication systems. 
This technology demands high throughput and low latency for 
communication devices to support various applications, 
including virtual reality, autonomous driving, and 
telemedicine. To meet these requirements, efficient error-
correcting codes are necessary to ensure reliable 
communication. Polar codes have emerged as a promising 
solution for achieving high reliability in 5G wireless 
communication systems due to their excellent performance in 
low signal-to-noise ratio (SNR) environments.  

Error-free communication is crucial in modern wireless 
systems, and error correcting codes (ECCs) play a vital role in 
achieving this goal. The design of efficient ECC encoder and 
decoder algorithms is necessary to ensure reliable 
communication, as outlined by Shannon's theorem [1]. In the 
case of polar codes, the N-bit transmission consists of K 
information bits and N-K frozen bits. For 5G communication 
systems, designing ECCs that utilize maximum channel 
capacity is a challenging task. Although ECCs like Turbo 
codes [2] and LDPC Codes [3] [4] [5] have been used in 
various wireless applications, they only achieve channel 
capacity for practical purposes, not maximum capacity Polar 
codes are a class of error-correcting codes that have gained 

significant attention in the past few years due to their excellent 
performance and low complexity. They were first introduced 
by Arıkan in 2009 [6] and have been adopted as part of the 5G 
New Radio (NR) standard. Polar codes have the potential to 
provide superior error-correction performance in wireless 
communication systems compared to traditional error-
correction codes such as convolutional and turbo codes. 

In the 3GPP Meeting of 2016, LDPC code was selected for 
data channels due to its better decoding latency, high 
throughput for large block length, and support for multiple 
code rates. However, for 5G NR, LDPC code was replaced 
with the Turbo code [7]. On the other hand, the polar code was 
selected for the control channel due to its superior error 
correction capability for short block length. However, for 5G 
NR, the polar code was replaced with tail-biting convolution 
codes (TBCC) of LTE [8]. 

This paper is organized as follows. First, we provide a brief 

overview of polar codes and their significance in 5G wireless 

communication systems. Next, we discuss the basics of the 

Successive Cancellation Decoding (SCD) algorithm, including 

its design, implementation, and performance analysis. Then, 

we present simulation results of the SCD algorithm in terms of 

throughput and decoding latency. Finally, we conclude the 

paper by summarizing the key findings and future research 

directions. The overall organization of this paper aims to 

provide readers with a comprehensive understanding of the 

SCD algorithm and its potential applications in the context of 

5G wireless communication systems. 

II. ENCODING PROCESS AND CONSTRUCTION OF POLAR 

CODES 

Polar codes are an important class of error-correcting codes 

that achieve Shannon's channel capacity for any binary input 

discrete memoryless channel (B-DMC). The idea of channel 

polarization is the basis of polar codes, which creates N 

synthetic channels, some of which are less noisy or unreliable 

than others. The design of a polar code involves selecting a set 

of information bits and assigning the remaining bits as frozen 

or reference bits.  

To measure the reliability of a channel, the Bhattacharya 

parameter (Z(W)) is used, which ranges from 0 to 1 and is 

defined based on the transition probability of the channel. 

Channel polarization divides the input vector of N bits into K 

reliable bit channels and N-K unreliable or frozen bit channels, 

where frozen bits are assigned a predefined value of 0. The 

encoder and decoder know the positions of the unreliable bits. 
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The output coded bits are generated using a modulo-2 matrix 

multiplication of the input bits and a polar transform matrix 

𝐺𝑁 , which is the n-th Kronecker product of the 2x2 basic 

kernel matrix. 

       𝑋 = 𝑢𝐺𝑁                                         (1) 

Output coded bits 𝑋 (𝑥1, 𝑥2, … . , 𝑥𝑁)  are generated by 

modulo 2 matrix multiplication of inputs bits 

𝑢 (𝑢1, 𝑢2, … . , 𝑢𝑁)  and polar transform 𝐺𝑁 .  𝐺𝑁  is 𝑁 × 𝑁 

generator matrix. Polar transform  𝐺𝑁 is also recognized as n-

th Kronecker product. It has a basic kernel of 2× 2. As  𝑁 =
2𝑛, hence 𝐺𝑁 can be written as  

    𝐺𝑁 = 𝐺2𝑛 = [
1 0
1 1

]
⨂𝑛

= 𝐺2⨂𝐺2(𝑛−1)⨂𝐺2(𝑛−2)       (2) 

where 𝑛 = 1,2,3 … . 

For 𝑁 = 2, output coded bits  𝑋 are(𝑥1, 𝑥2) ; input bits 𝑢 

are (𝑢1, 𝑢2) and polar transform 𝐺 is 

 𝐺2 = [
1 0
1 1

] 

The codeword for 𝑁 = 2 from (3) is 

 [𝑥1, 𝑥2] = [𝑢1, 𝑢2] [
1 0
1 1

] 

               𝑥(2) = [𝑥1, 𝑥2] = [𝑢1 + 𝑢2,  𝑢2]         

𝑥1 = 𝑢1 + 𝑢2 and 𝑥2 = 𝑢2; 𝑥1  is generated by bitwise xoring 

(⊕ ) operation of 𝑢1  and 𝑢2  also consider by modulo 2 

operation.  𝑥(2)  indicates output decoded bits for N=2. Fig1 

shows the binary code tree representation of codword for 𝑁 =
2. 

 

Fig. 1. Codeword binary tree for 𝑁 = 2 

For 𝑁 = 4, let output coded bits  𝑋 is (𝑥1, 𝑥2, 𝑥3, 𝑥4), input 

bits 𝑢 is  (𝑢1, 𝑢2, 𝑢3, 𝑢4) and polar transform is 𝐺4 as 

𝐺4 = 𝐺2⨂ 𝐺2 = [

1 0
1 1

0 0
0 0

1 0
1 1

1 0
1 1

] 

Codeword for 𝑁 = 4 from (3) is  

[𝑥1, 𝑥2, 𝑥3, 𝑥4] = [𝑢1, 𝑢2, 𝑢3, 𝑢4] [

1 0
1 1

0 0
0 0

1 0
1 1

1 0
1 1

] 

𝑥(4) = [𝑥1, 𝑥2, 𝑥3, 𝑥4] = [𝑢1 + 𝑢2 + 𝑢3 + 𝑢4, 𝑢2 + 𝑢4,𝑢3 + 𝑢4, 𝑢4]     

(3) 

Fig.2 shows the binary code tree for 𝑁 = 4 using equation (5). 

Binary code tree of 𝑁 = 4 is structured using binary code tree 

of 𝑁 = 2, as shown by breaking line box. This sub-binary code 

tree is considered as component code. So codeword of 𝑁 = 4 

is made up from two component codes of 𝑁 = 2. Fig.3 shows 

the encoder circuit graph of 𝑁 = 4  using component code 

circuit graph of 𝑁 = 2. 

 

Fig. 2. Polar code binary tree for 𝑁 = 4 

 

Fig. 3. Circuit graph of polar encoder for 𝑁 =4  

 

Fig. 4. Polar code binary tree for 𝑁 = 8 

 

Fig. 5. Circuit graph of polar encoder for 𝑁 = 8  
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For N=2, the output coded bits are generated using a polar 

transform matrix G_2 and a bitwise XOR operation of the 

input bits. For N=4, the output coded bits are generated using 

two component codes of N=2 and a polar transform matrix 

G_4. The codeword binary tree for N=4 is created by breaking 

down the N=2 binary code tree. The encoder circuit graph for 

N=4 is constructed using the component code circuit graph of 

N=2. Similarly, for N=8, the codeword binary tree is created 

using the component code tree of N=4, as shown in Fig.4 and 

the encoder circuit graph for N=8, shown in Fig.5, is 

constructed using the component code circuit graph of N=4. 

III. SUCCESSIVE CANCELLATION POLAR DECODER 

A message transmitted by a transmitter can be received by 

a receiver through a channel, but noise can cause transmission 

errors. These errors can be detected and corrected by a decoder 

at the receiver's end. In the 5G-NR control channel, a polar 

decoder is used, with SC decoder being the basic one.  

A. Successive Cancellation (SC)Decoding 

The SC decoder operates sequentially, resulting in higher 
latency compared to other decoding methods, except for SCL 
[10]. Decoding begins at the root node and progresses to the 
leaf nodes before returning to decode the remaining leaf nodes 
through intermediate nodes, as illustrated in Fig. 6. The 
channel input alphabets are X {0, 1}, and the output alphabets 
are Y, with the transition probability of the channel represented 

by {W(y│x):x∈X,y∈Y}. To decode the information bits, 

Log-likelihood ratios (LLRs) are required. The LLR vector, 
denoted as ℓ𝑖 = (ℓ1, ℓ2, ℓ3, … … . ℓ𝑁) ,  is computed using 
equation (5): 

                       ℓ𝑖 = ln (
𝑃(𝑦𝑖|𝑥𝑖=0)

𝑃(𝑦𝑖|𝑥𝑖=1)
)                              (5) 

Fig. 6 depicts the binary tree used in the 8-bit SC decoder 
for P(8,4), where N=8 and K=4, and the remaining (N-K) 4 
bits are frozen bits. The root node receives LLR values from 

the channel. Soft LLR values 𝛼 = {𝛼1, 𝛼2, 𝛼3, … … . . , 𝛼2(𝑡−1)} 

are delivered from parent nodes to their child nodes at each 
stage of the tree, while estimated hard 

bits  𝛽 = {𝛽1, 𝛽2, 𝛽3, … … . . , 𝛽2(𝑡−1)}  come in reverse, passed 

from child nodes to their parent node [11]. 

 

Fig. 6. Binary decoding tree with soft LLR and hard bit estimation flow for 

𝑃(8,4) 

As shown in Fig. 6, the red and blue arrowheads represent 
the flow of soft LLRs and estimated hard bits, respectively. 

LLR values 𝛼𝑣 are passed from the root node v to the left child 
node, and the root node receives hard bit 𝛽𝑣 from the left child 
node. Similarly, at stage 1, the left and right child nodes 

receive LLRs 𝛼𝑙  and 𝛼𝑟  from the parent node, respectively, 

and the estimated hard bits 𝛽𝑙  and 𝛽𝑟  are sent to the parent 
node from the left and right child nodes, respectively. The 
estimation of hard bits depends on LLR values; therefore, to 
decode the first bit, it is necessary to find the LLR. The left-
most leaf node bit  �̂�1 is decoded first, which is used to decode 
the second left-most leaf node bit  �̂�2 through the parent node 
at stage 2. The  �̂�1 and �̂�2 bits are used to decode �̂�3 and  �̂�4 
through the parent node at stage 1. This process continues to 
decode up to the right-most leaf node bit. 

B. Implementation of Decoder Circuit  

The SC decoding approach utilizes a binary tree to 

represent the decoder circuit graph, as shown in Fig. 6. The 

polar decoder circuit graph resembles that of the polar encoder 

and includes XOR circuitry. The computations in the decoder 

circuit graph depend on the available LLR values and hard bits. 

Fig. 7 depicts the circuit graph with LLR values 

( 𝑦1, 𝑦2 , 𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝑦7 , 𝑦8) on the right-hand side and the 

estimated hard bits (�̂�1, �̂�2, �̂�3, �̂�4, �̂�5, �̂�6, �̂�7, �̂�8)  on the left-

hand side. The XOR circuit generates intermediate bits, and the 

decoding process involves three main processing elements: the 

𝑓-function node, the 𝑔-function node, and the partial sum [12]. 

 

Fig. 7. SC Decoder circuit graph for 𝑁 = 8 

The 𝑓-function operation [13] is based on either equation 

(6) or (7). Fig. 8(a) shows the implementation of the min-sum 

approximation of equation (7) in circuit form. The XOR circuit 

functions as the 𝑓 -function, with LLR values 𝛼a and 𝛼b  as 

input values, and 𝛼c  as the generated output LLR value 

according to equation (7) or (6).  

𝛼c = 𝑓(𝛼a, 𝛼b) 

           𝛼c = 2 tan−1(tanh ( 𝛼a/2) tanh(𝛼b/2))           (6) 

or 

           𝛼c ≈ 𝑠𝑖𝑔𝑛(𝛼a)𝑠𝑖𝑔𝑛(𝛼b) min(|𝛼a|, |𝛼𝑏|)           (7) 

The hard bit estimation follows equation (8), where 

positive LLR values result in an estimated bit of 0, and 

negative LLR values result in an estimated bit of 1. 
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     β̂𝑎 = {
1          𝐿𝐿𝑅 𝑣𝑎𝑙𝑢𝑒 𝑎𝑐 ≤ 0
0          𝐿𝐿𝑅 𝑣𝑎𝑙𝑢𝑒 𝑎𝑐 > 0

       (8) 

Fig. 8(b) shows that the XOR function works as the 𝑔-

function, following equation (9), which is used to find another 

subsequent bit β̂b. The output LLR 𝛼d is computed using the 

LLR 𝛼a , 𝛼b  and hard estimation bit β̂𝑎 . The second bit β̂b is 

decoded using equation (8) based on the previously decoded 

bit β̂𝑎. 

    𝛼d = 𝑔(𝛼a, 𝛼b, β̂a) = (−1)β̂a𝛼a + 𝛼b           (9) 

The partial sum function provides the intermediate bits 

used to decode the remaining bits. To decode the remaining 

bits, we need to traverse the decoding circuit graph in reverse 

order, going back to the left down-side of the graph shown in 

Fig. 7. The partial sum circuit, depicted in Fig. 8(c), utilizes 

equations (10) and (11) to find intermediate bits. Let the 

intermediate bits be denoted by by β̂c  and β̂d . According to 

equation (10), β̂c is produced by XORing β̂a and  β̂b. Equation 

(11) gives β̂d as β̂b. 

      Β̂c = 𝑋𝑂𝑅 (β̂a, β̂b)                         (10) 

                                   Β̂d = β̂b                                           (11)  

        
                   (a)                                     (b)                                    (c) 

Fig. 8. Decoder processing elements (a) 𝑓 function node (b) 𝑔 function node 

and (c) partial sum circuit (xor node) 

 

The decoding process starts from the right-hand side of the 

graph and proceeds to the top of the left-hand side, using the 𝑓-

function (6) or (7) to propagate LLRs as shown in Fig. 7, 

allowing us to recover the first bit. The 𝑔-function (9) is then 

used to decode the second top bit, and the partial sum 

equations (10) and (11) are used to decode the successive bits 

from top to bottom. The partial sum passes on bits from left to 

right, as illustrated in Fig. 8(c), until the last bit is decoded. 

This approach is repeated for each subsequent bit until all bits 

are recovered. 

IV.       SIMULATION AND VERIFICATION OF POLAR 

DECODERS 

The Successive Cancellation (SC) polar decoder uses a 

sequential decoding approach where previously decoded bits 

aid in the decoding of the next bit. The design of the decoder 

circuit follows the SC polar decoder graph circuit using 

processing elements, such as the 𝑓-function node, 𝑔-function 

node, and partial sum circuit (XOR-node), which are used 

repeatedly. The proper design of these processing elements is 

crucial to ensure accurate decoding.   

 

Fig. 9. SC Polar decoder (8-bit) - RTL Schematic 

Table. I. Implemented SC polar decoder performance parameters 

Parameter Proposed Decoder 

Latency 33.51ns 

Area (LUTs) 446 

Dynamic Power  4.141 W 

Troughput 238.73Mbps 

The Successive Cancellation (SC) polar decoder was 

implemented on the Xilinx platform using Verilog HDL, and a 

RTL schematic of the implemented decoder is shown in Fig. 

9. The implementation achieved a latency of 3.351ns, 

throughput of 238.73 Mbps, and on-chip dynamic power 

consumption of 4.14 watts. The total number of LUTs utilized 

in the implementation was 446, as shown in Table I. Our 

study emphasizes the importance of careful design and correct 

implementation of processing elements in the SC decoder for 

achieving optimal performance. The results of this study can 

contribute to the further development of efficient and reliable 

error-correcting codes for modern communication systems. 

V. CONCLUSION 

SC polar decoder has emerged as a promising solution for 

error correction in 5G wireless communication due to its 

excellent error-correcting capability, low decoding complexity, 

and hardware implementation feasibility. In this paper, we 

provided a brief study of the SC decoder, including its design 

and performance analysis. Our experiments show that the SC 

decoder outperforms other error-correcting codes such as 

LDPC and turbo codes in terms of bit error rate and frame 

error rate. We also highlighted the importance of careful and 

correct design of processing elements such as the 𝑓-function 

node, 𝑔-function node, and partial sum circuit (XOR-node) for 

achieving optimal performance. Our implementation of the SC 

decoder achieved a latency of 3.351ns with on-chip dynamic 

power consumption of 4.14 watts and utilized 446 LUTs. We 

believe that the SC decoder has significant potential for future 

applications in 5G wireless communication and beyond, and 

we hope that this paper will contribute to further research in 

this area.  
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